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In the Ring Star Problem, the aim is to locate a simple
cycle through a subset of vertices of a graph with the
objective of minimizing the sum of two costs: a ring cost
proportional to the length of the cycle and an assign-
ment cost from the vertices not in the cycle to their
closest vertex on the cycle. The problem has several
applications in telecommunications network design and
in rapid transit systems planning. It is an extension of the
classical location–allocation problem introduced in the
early 1960s, and closely related versions have been re-
cently studied by several authors. This article formulates
the problem as a mixed-integer linear program and
strengthens it with the introduction of several families of
valid inequalities. These inequalities are shown to be
facet-defining and are used to develop a branch-and-cut
algorithm. Computational results show that instances
involving up to 300 vertices can be solved optimally using
the proposed methodology. © 2004 Wiley Periodicals, Inc.
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1. INTRODUCTION

In a typical telecommunications network, the traffic is
gathered from many sources, progressively combined in

order to fill links of increasing capacity, and finally for-
warded to its destination. Hence, most telecommunications
networks are naturally structured in a multilayer hierarchi-
cal structure.

Although real telecommunications (voice, video, or data,
nationwide or international networks) are usually structured
into many such levels, most design problems considered by
telecommunications companies concern only a part of the
overall network. A generic telecommunications network
consists of access networks which connect the terminals
(users) to concentrators (switches or multiplexers) and a
backbone network which interconnects these concentrators
or connects them to a central unit (root). Telecommunica-
tions networks differ in the design of the access and back-
bone networks (see, e.g., Gourdin et al. [8] or Klincewicz
[11]).

A solution to the design of some telecommunications
networks is to connect terminals to concentrators by point-
to-point links, which results in a star topology, and to
interconnect the concentrators through a ring structure. This
is the case in Digital Data Service (DDS) design, as men-
tioned, for example, in Xu et al. [18]. Roughly speaking, the
problem then consists of selecting a subset of user locations
where concentrators will be installed, interconnect them by
a ring network, and assign the other user locations to those
concentrators. The total cost of all connections must be
minimized. Figure 1 illustrates a potential solution, where
the solid lines represent the internet (ring) and the dashed
lines represent the intranet (assignments). This problem was
introduced in Moreno Pérez et al. [14] and solved heuristi-
cally.

Similar location–allocation problems arise in a number
of planning contexts (see Cooper [4]). They consist of
locating a number of facilities among the vertices of a graph
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so that the allocation costs (i.e., the sum of distances from
the remaining vertices to their closest facility) is minimized.
In some applications, as in rapid transit systems planning,
the facilities must be served on a single-vehicle route. Thus,
in addition to the allocation cost, the objective includes the
cost of a shortest Hamiltonian cycle visiting all the facilities.
See Labbé et al. [12] for a review of applications and a more
general class of problems consisting of locating structures in
a graph.

In this article, we consider a problem common to both
contexts, telecommunications and location–allocation,
named the Ring Star Problem (RSP). The problem can be
formally stated as follows: Consider a mixed graph G � (V,
E � A), where V � {v1, v2, . . . , vn} is the vertex set, E
� {[vi, vj] : vi, vj � V, i � j} is the edge set, and A
� {(vi, vj) : vi, vj � V} is the arc set [loops (vi, vi) are
included in A]. We assume that n � 5 to eliminate degen-
erate and trivial instances. Vertex v1 is referred to as the
root (or depot). Edges in E refer to the undirected connec-
tions in the internet, and arcs in A refer to the directed
assignments in the intranet. There is a nonnegative ring cost
cij associated with each edge [vi, vj] and a nonnegative
assignment cost dij associated with each arc (vi, vj). A
solution to the RSP is a simple cycle through a subset V� of
V including v1 and at least two other vertices. The ring cost
of a solution is the sum of the ring costs of all edges on the
cycle. The assignment cost of a solution is defined as

�
vi�V�V�

min
vj�V�

dij. (1)

The RSP consists of determining a solution for which the
sum of ring and assignment costs is minimized. The prob-
lem is ��-hard since the special case in which the assign-
ment costs are very large compared to the ring cost is the
classical Traveling Salesman Problem (TSP).

Lee et al. [13] defined a very closely related problem

(referred to as the Steiner Ring Star Problem) by consider-
ing an additional set of vertices W (representing terminals in
telecommunications and customers in location–allocation)
and setting the assignment cost to

�
vi�W

min
vj�V�

dij. (2)

They developed a branch and cut that solved instances with
�V� � 50, �W� � 90, and �V� � �W� � 100. Xu et al. [18]
proposed a tabu search algorithm for this problem and tested
it on instances with �V� � 300 and �W� � 300. In addition,
Current and Schilling [5] and Gendreau et al. [7] presented
algorithms for variants of the RSP in which the ring cost is
minimized subject to an upper bound on the cost of the
largest assignment.

Clearly, practical applications of this type of models,
particularly in telecommunications, contain additional con-
straints. For instance, a ring vertex should have a limit on
the number of incoming external vertices or on the traffic
coming from these vertices. Also, hybrid coax-fiber net-
works allow more sophisticated structures for the intercon-
nection of the external vertices, as opposed to direct con-
nections through ring vertices. The RSP is an interesting
simplified version of these more realistic situations since it
contains routing and location structures, two well-known
hard combinatorial problems. Therefore, good cutting-plane
algorithms for the RSP could prove valuable to approximate
the more realistic problems. This is the case of a restricted
RSP version in which the total ring cost is minimized while
the total assignment cost cannot exceed a given threshold
(see Rodrı́guez Martı́n [17]).

Our aim was to develop a polyhedral-based exact algo-
rithm for the RSP. The remainder of this article is organized
as follows: In Section 2, the RSP is formulated as a mixed-
integer linear program to which several classes of valid
inequalities are incorporated. In Section 3, we derive di-

FIG. 1. Ring-star solution.
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mension and facet-defining results for the RSP. A branch-
and-cut algorithm is described in Section 4. Section 5 pre-
sents extensive computational results on three classes of
instances, one of them generated so as to compare our
results with the ones in Lee et al. [13]. Conclusions follow
in Section 6.

2. MATHEMATICAL MODEL

The RSP can be formulated as a mixed-integer linear
program as follows: For each edge [vi, vj] � E, let xij be
a binary variable equal to 1 if and only if edge [vi, vj]
appears on the cycle. For each arc (vi, vj) � A, let yij be a
binary variable equal to 1 if and only if vertex vi is assigned
to vertex vj on the cycle. If a vertex vi is on the cycle, it is
then assigned to itself, that is, yii � 1. In addition, for S �
V, define E(S) :� {[vi, vj] � E : vi, vj � S} and �(S) :�
{[vi, vj] � E : vi � S, vj � S.} If S � {vi}, we simply
write �(i) instead of �({vi}). For E� � E, define x(E�) :�
¥[vi,vj]�E� xij.

The formulation is then

minimize �
�vi,vj��E

cijxij � �
�vi,vj��A

dijyij, (3)

subject to

x���i�� � 2yii for all vi � V, (4)

�
vj�V

yij � 1 for all vi � V�	v1
, (5)

x���S�� � 2 �
vj�S

yij for all S � V : v1 � S, vi � S, (6)

xij � 	0, 1
 for all �vi, vj� � E, (7)

yij � 0 for all �vi, vj� � A, (8)

y11 � 1 (9)

y1j � 0 for all vj � V�	v1
, (10)

yjj integer for all vj � V�	v1
. (11)

In this formulation, constraints (4) are degree constraints.
They ensure that the degree of a vertex vi is 2 if and only if
it belongs to the cycle (i.e., yii � 1). Constraints (5) mean
that either vi is a vertex on the cycle (i.e., yii � 1) or vi is
assigned to a vertex vj on the cycle (i.e., yii � 0 and yij

� 1). Constraints (6) are connectivity constraints since they
state that S must be connected to its complement by at least
two edges of the cycle whenever at least one vertex vi � S
is assigned to vj � S. The combination of (4), (7), (9), and
(10) guarantees that the solution will contain at least one

cycle including the root. Constraints (6) limit the number of
cycles to one by enforcing connectivity between vertices
with yii � 1 and v1; in other words, without constraints (6),
the model would admit solutions like the one illustrated in
Figure 2. The combination of (4), (5), (6), and (8) means
that every vertex not belonging to the cycle is assigned to a
vertex on the cycle. Integrality conditions on the yij vari-
ables (vi � vj) are unnecessary since, for a given integer x,
the objective is minimized when vertices not on the cycle
are assigned to the closest vertices on the cycle. Integer
solutions are trivially determined in case of ties. Implicitly,
the above model imposes that the cycle visits at least three
vertices, including the root. Such a constraint guarantees
that communication between vertices remains possible even
if one vertex of the backbone network (e.g., the root) fails.
Further, if reliability is unimportant, other potential solu-
tions consisting of a degenerate cycle (i.e., only the root or
only the root and another vertex) can easily be enumerated.

Observe that the model (3)–(11) allows the inclusion of
a hub-selection fixed-cost dii for having vertex vi in the
cycle. Another important advantage of the model defined by
(3)–(11) is that it can easily be extended to deal with hub
capacity constraints. For instance, if vertex vi in the cycle
cannot serve more than li external vertices, then the follow-
ing family of constraints is added to the model:

�
�vj,vi��A

yij � liyii for all vi � V.

Clearly, the presence of these constraints can make an
instance very difficult when compared to the uncapacitated
version. Therefore, these additional constraints could re-
quire solution techniques different from those described in
this article.

The linear relaxation of the model (3)–(11) can be
strengthened through the introduction of additional valid
inequalities. First, observe that connectivity constraints (6)
are very rich and reduce to the constraints

FIG. 2. Infeasible solution: constraint (6) is violated.
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xij � yij � yjj (12)

whenever S � {vi, vj} � V�{v1}. Indeed, when S � {vi,
vj} and v1 � S, when (6) can be written as x(�(i))
� x(�( j)) � 2xij � 2yii � 2yij, and by Eqs. (4), we obtain
inequalities (12). Moreover, observe that constraints (12)
are stronger than the constraints

xij � 1 � yij for all vi, vj � V�	v1
,

and they dominate the classical inequalities:

xij � yii and xij � yjj for all vi, vj � V�	v1
.

Furthermore, new useful constraints similar to (12) are

x1i � yii for all vi � V�	v1
, (13)

which force vertex vi to be in the cycle if edge [v1, vi] is
included in the cycle.

Inequalities valid for the cycle polytope (Bauer [2]) are
also clearly valid for the RSP. We restrict our attention to
the following 2-matching inequalities:

x�E�H�� � x�T� � �
vi�H

yii �
�T� � 1

2
(14)

for all H � V and T � �(H), satisfying

(i) {vi, vj} � {vk, v�} � A for [vi, vj], [vk, v�] � T
and [vi, vj] � [vk, v�],

(ii) �T� � 3 and odd.

These inequalities are standard for cycle problems and their
validity can be proved by adding equalities (4) for all vi

� H and inequalities xij � 1 for all [vi, vj] � T, dividing
by two, and rounding down, first, the left-hand side and,
second, the right-hand side of the inequality. Constraints
(14) can be rewritten in the form

x���H��T� � ��T� � x�T�� � 1,

which coincides with the blossom inequalities of the TSP
polytope. This implies that when x(T) � �T� then
x(�(H)�T) � 1, while when x(T) � �T� � 1, then
x(�(H)�T) � 0. Therefore, intuitively, constraints (14)
impose that at least an edge in �(H)�T must be in the cycle
when all the edges in T are included in the cycle.

An additional family of valid inequalities follows from
the fact that some assignments are incompatible. More
specifically, variables yij and yik are incompatible when j
� k, and, thus, the Stable Set Problem (SSP) associated to
those incompatibility relations between the assignment vari-
ables is a relaxation of the RSP. A similar observation was
made by Avella and Sassano [1] for the p-Median Problem.

This property leads (for example) to the following odd-hole
(or clique) inequalities:

yij � yjk � yki � 1 (15)

for three different vertices vi, vj, vk � V�{v1}. See Padberg
[15] for a partial polyhedral description of the stable set
polytope.

Finally, the combination of the two mentioned relax-
ations (i.e., the cycle and the SSPs) produces new valid
inequalities for the RSP, such as

x���S�� � 2� yij � yjk � yki� (16)

for three different vertices vi, vj, vk � V�{v1} and all S �
V�{v1} such that vi, vj, vk � S.

In next section, we study conditions under which these
inequalities are facet-defining for the RSP polytope. As a
consequence, all the families contain facet-defining inequal-
ities; hence, they all contribute to the polyhedral analysis of
the polytope. Moreover, in our computational experiments
on Euclidean instances from the literature (see Section 5),
they were all relevant, except for constraints (15) and (16),
which could be useful for non-Euclidean instances.

3. POLYHEDRAL ANALYSIS

We now derive some polyhedral results for model (3)–
(11). Denote by P the polytope defined by the convex hull
of feasible solutions to RSP and by Q the associated TSP
polytope, that is,

P :� conv	�x, y� � ��E���A� : �x, y� satisfies �4�–�11�
,

Q :� 	�x, y� � P : yii � 1 for all vi � V�	v1

.

Define F as the set of free vertices, that is, a set of vertices
not restricted to be in the cycle. Polytopes P and Q are
linked by the intermediate polytopes:

P�F� :� 	�x, y� � P : yii � 1 for all vi � F � 	v1

,

for all F � V�{v1}, in the sense that P(A) � Q and
P(V�{v1}) � P. This connection allows us to extend
known results from Q to P. For any � � ��E�, 	 � ��A�,
and 
 � �, define the hyperplane

���, 	, 
� :� 	�x, y� � ��E���A� : �x � 	y � 

.

Lemma 3.1. Let vi1
, vi2

, . . . , vin�1
be an ordering of the

vertices of V�{v1} and let Fk � {vi1
, . . . , vik

} for all k
� 1, . . . , n � 1. If for each k � 1, . . . , n � 1 and each vit

� V�{vik
} there exists a feasible solution (x, y) to the RSP

such that (iii)
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(i) yilil
� 1 for all l  k (i.e., all vertices of V�Fk belong

to the cycle),
(ii) yilil

� yil1
� 1 for all l � k (i.e., all vertices of

Fk�{vik
} are either on the cycle or assigned to the

root v1),
(iii) yikit

� 1 (i.e., vertex vik
does not belong to the cycle

and is assigned to vertex vit
), and

(iv) �x � 	y � 
,

then dim(�(�, 	, 
) � P) � dim(�(�, 	, 
) � Q) � (�V�
� 1)2.

Proof. We will prove by induction on �Fk� that
dim(�(�, 	, 
) � P(Fk)) � dim(�(�, 	, 
) � Q)
� �Fk�(�V� � 1). If k � 0, that is, if Fk � A, then this
inequality holds since P(Fk) � Q. Now, by the induction
hypothesis, there exist dim(�(�, 	, 
) � Q) � �Fk�1�(�V�
� 1) � 1 affinely independent points such that yjkjk

� 1 in
�(�, 	, 
) � P(Fk�1) and, thus, in �(�, 	, 
) � P(Fk).
An additional set of �V� � 1 affinely independent points
such that yjkjk

� 0 in �(�, 	, 
) � P(Fk) are obtained as
in the lemma’s hypothesis. ■

Roughly speaking, conditions (i), (ii), and (iii) of Lemma
3.1 describe features of a large collection of RSP solutions
that guarantee that they are linearly independent. These
features are accomplished by tight RSP solutions for several
valid inequalities, as is shown in the following propositions
regarding facet-defining results:

Proposition 3.1. dim(P) � �E� � �V�2 � 3�V� � 1.

Proof. Recall that we are assuming that �V� � 5. Then,

dim�P� � dim���0, 0, 0� � P�

� dim���0, 0, 0� � Q� � ��V� � 1�2

�by Lemma 3.1 using any sequence�

� dim�Q� � ��V� � 1�2

� �E� � �V� � ��V� � 1�2

�see Grötschel and Padberg [9]�.

Now, dim(P) � �E� � �V�2 � 3�V� � 1 since the RSP can
be described with �E� � �V�2 variables and �V� type (4), �V�
� 1 type (5), and �V� type (9)–(10) linearly independent
equality constraints. ■

Another important consequence of Lemma 3.1 is that any
facet-defining inequality �x � 	y � 
 for Q satisfying
(i)–(iv) is also facet-defining for P. We will use this result
for the polyhedral analysis of P.

A first consequence of Lemma 3.1 is that xij � 0 defines
a facet of P for each [vi, vj] � E, and yij � 0 defines a
facet of P for each (vi, vj) � A, i � j and i � 1 (see

Rodrı́guez Martı́n [17] for detailed proofs). Note at this
stage that the inequality xij � 1 is not facet-inducing since
it is dominated by the connectivity constraint (12). If i � j,
the inequality yij � 0 is not facet-inducing since it is
implied by equalities (4) and xij � 0 for (vi, vj) � F. If i
� j and i � 1, then yij � 0 since y11 � 1, and, therefore,
yij � 0 is not facet-inducing. The inequality yij � 1 is not
facet-inducing since it is implied by constraints (5) and (8).

Proposition 3.2. The valid inequality (6) defines a facet of
P for each S � V�{v1}, 2 � �S� � �V� � 3, vi � S.

Proof. The hyperplane defined by x(�(S)) � 2 ¥vj�S

yij satisfies the assumptions of Lemma 3.1 for any sequence
containing vi in last position. Indeed, for any vertex vk

� V�{v1, vi}, there exists a simple cycle spanning V�{vk}
and with two edges in �(S) such that, together with the
assignment of vk to each vertex of the cycle, yields ( x, y)
vectors of P satisfying x(�(S)) � 2 ¥vj�S yij(�2). Fur-
thermore, for vi, the last vertex of the sequence, a simple
cycle spanning (S � {v1}�{vi}) with two edges in �(S) can
be constructed. The assignment of vi to each vertex of
S�{vi} yields �S� � 1 solutions ( x, y) satisfying the hy-
potheses (i)–(iv) of Lemma 3.1. An additional �V�S� such
solutions ( x, y) are obtained by constructing a simple cycle
spanning V�S (which contains at least three vertices) and
successively assigning vi to each vertex of V�S. The result
follows by noting that in Q the inequality x(�(S)) � 2
¥vj�S yij reduces to x(�(S)) � 2, which is facet-defining
(Grötschel and Padberg [9]). ■

Proposition 3.2 does not hold if �S� � 1 or �S� � �V� �
2 since constraints (6) are then dominated by (4) or x(�(S))
� 2, respectively. The validity of the latter inequality
comes from the fact that the cycle must contain at least one
vertex from S whenever S � V�{v1} and �S� � �V� � 2.
Proposition 3.2 is also invalid if vi � S, since, then,

x���S � 	vi
�� � x���S�� � x���i�� � 2 �
vj�S

xij

� 2 �
vj�S�	vi


yij � 2� yii � �
vj�S

yij�.

This implies that x(�(S)) � 2 ¥vj�S ( yij � xij), which
dominates the corresponding constraint (6).

Proposition 3.3. The inequality x1j � yjj defines a facet of
P for j � 1.

Proof. The hyperplane defined by x1j � yjj satisfies
the assumptions of Lemma 3.1. This can be seen by taking
a simple cycle spanning V�{vk} and successively assigning
vk to each vertex of the cycle. Furthermore, this cycle must
contain edge [v1, vj] whenever vk � vj. The result follows
from the fact that x1j � yjj � 1 induces a facet of Q
(Grötschel and Padberg [9]). ■
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The constraints xi1 � yi1 � 1 for all i � 1 do not induce
facets of P since these are dominated by the constraints x1i

� yii. Indeed, x1i � yii � 1 � ¥vj��{vi}
yij � 1 � yi1.

Proposition 3.4. The inequality (14) for each H � V and
T � �(H) satisfying

(i) {vi, vj} � {vk, v�} � A for [vi, vj], [vk, v�] � T
and [vi, vj] � [vk, v�],

(ii) �T� � 3 and odd

defines a facet of P when �V� � 6.

Proof. The hyperplane defined by x(E(H)) � x(T)
� ¥vi�H yii � (�T� � 1)/ 2 satisfies the assumptions of
Lemma 3.1. Indeed, for each vertex vk � V�{v1}, it is
trivial to design a simple cycle spanning V�{vk} and satis-
fying hypotheses (i)–(iv) of Lemma 3.1, and vk can be
assigned to each vertex of the cycle. The result follows from
the fact that x(E(H)) � x(T) � ¥vi�H yii � (�T� � 1)/ 2
defines a facet of Q (Grötschel and Padberg [9]). ■

We now turn to the two inequalities (15) and (16) related
to the SSP relaxation. The proofs of the following two
results are provided in the Appendix:

Proposition 3.5. The inequality (15) defines a facet of P
for each three different vertices vi, vj, vk � V�{v1}.

If one vertex, say vk, coincides with the root v1, Propo-
sition 3.5 does not hold, since, then, (15) is dominated by
(12). Indeed, in this case,

yij � yj1 � y1i � yij � yj1 � yjj � yj1 � �
vl�V

yjl � 1.

Proposition 3.6. The inequality (16) defines a facet of P
when �V� � 7 for each three different vertices vi, vj, vk

� V�{v1} and each S � V�{v1} such that vi, vj, vk � S and
4 � �S� � �V� � 3.

Observe that inequalities (16) are not facet-defining
when �S� � 3, since, in that case, they are the sum of
inequalities (12) for arcs (vi, vj), (vj, vk), and (vk, vi).
Also, (16) cannot be facet-defining if �V�S� � 2, since, then,
x(�(S)) must be equal to at least two.

4. BRANCH-AND-CUT ALGORITHM

We now outline the main ingredients of our branch-and-
cut algorithm for finding an optimal solution cycle C� of the
RSP. Let V(C� ) be the set of vertices in the solution.

STEP 1 (Initialization). Set the iteration count t :� 1. Com-
pute an upper bound z� on the optimal RSP as follows:
Starting with V(C� ) :� {v1}, successively insert a vertex vi

� V(C� ) to minimize

L�i, �� :� � inc�C� , i� � �1 � ����dec�C� , i��,

where inc(C� , i) is the minimum increment produced in the
ring cost of cycle C� when inserting vi, and dec(C� , i) is the
decrease produced in the assignment cost. This operation is
repeated as long as L(i, �) decreases with a new insertion.
This is done for each � � {0.1, 0.3, 0.5, 0.7, 0.9} and the
best solution is selected. The values of � were chosen so as
to generate five rings, each with a different tradeoff between
the ring cost and the assignment cost.

On the other hand, the initial linear subproblem is then
defined as

minimize �
�vi,vj��E

cijxij � �
�vi,vj��A

dijyij,

subject to

x���i�� � 2yii for all vi � V

�
vj�V

yij � 1 for all vi � V�	v1


y11 � 1

x1i � yii for all vi � V�	v1
,

and the subproblem is solved and inserted in a list �.

STEP 2 (Termination check and subproblem selection). If
the list � is empty, stop. Otherwise, select a subproblem
from the list according to a best-first policy, that is, select
the subproblem having lowest objective value.

STEP 3 (Subproblem solution). Set t :� t � 1. Let z be the
solution objective value. If z � z� , go to Step 2. Otherwise,
if the solution is feasible for the RSP, set z� :� z, update C� ,
and go to Step 2.

STEP 4 (LP-based heuristic). If the solution is fractional and
t is a multiple of 5, apply the following heuristic: Given the
fractional solution ( x*, y*), sort the x*ij variables in de-
creasing order of their values and take, in turn, their asso-
ciated edges until a cycle C* is obtained. If v1 is not in C*,
introduce it in the best position. Finally, apply the classical
2-optimallity procedure to further improve the ring cost of
C*. Let z* be the objective function value of solution C*.
If z* � z� , set z� :� z* and update C� with C*.

STEP 5 (Constraint separation and generation). Introduce up
to 300 violated connectivity constraints (6), 2-matching
constraints (14), and constraints (15) and (16). If no constraints
can be generated, go to Step 6. Otherwise, go to Step 3.

STEP 6 (Branching). Create two subproblems by branching
on a fractional yii or xij variable. The first branching strat-
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egy consists of finding a yii variable. To this end, we applied
the “strong branching” rule (see Jünger and Thienel [10] for
details) within the five yii variables with fractional value
closest to 0.5. If all these variables are integer, select a xij

variable using the same criterion. Insert both subproblems in
� and go to Step 2.

The initial heuristic is a quite simple and intuitive
method, since no advantage was found in using a more
sophisticated approach.

We have developed the following separation procedures
for Step 5. Denote by G* � (V*, E*) the support graph
associated with a given (fractional) solution ( x*, y*), that
is, V* :� {vi � V : 0 � y*ii � 1} and E* :� {[vi, vj] �
E : 0 � x*ij � 1}. We also define A* :� {(vi, vj) � A :
i � j, 0 � y*ij � 1}.

Separation of Connectivity Constraints (6)

The inequalities (6) involving sets S such that �S� � 2
reduce to (12), and any of them can be violated only if the
corresponding edge [vi, vj] belongs to E* or the corre-
sponding arc (vi, vj) belongs to A*. So, they are separated
by examining only edges in E* and arcs in A*. Next, if the
support graph G* is not connected, then each subset S � V
corresponding to a connected component and such that v1

� S generates a violated connectivity constraint for each vi

� S. If G* is connected, finding a most violated connec-
tivity constraint x(�(S)) � 2 ¥vj�S yij is equivalent to
finding the largest violation of x(�(S)) � 2 ¥vj�S yij � 2.
For a given vertex vi � V�{v1}, this reduces to a maxi-
mum-flow problem defined as follows: Let G** � (V**,
E**) be a graph such that V** � V* � {vn�1} and E**
� E* � {[vn�1, vj] : vj � V*}. The capacity of each edge
e � E* is equal to x*e and that of the new edges [vn�1, vj]
is equal to 2y*ij. Let S� � V** be such that vn�1 � S�, v1

� S� and the capacity � of the cut �(S�) in G** is
minimum. If � � 2, there is no connectivity constraint
involving vi violated by the current solution ( x*, y*).
Otherwise, S � S��{vn�1} defines a most violated connec-
tivity constraint (6) involving vi.

Note that constraints similar to (6) were introduced by
Lee et al. [13] for the Steiner RSP. However, these authors
only describe a separation procedure for the subset of
weaker constraints:

x���S�� � 2� yii � yjj � 1�

for all S � V : vi � S, vj � S. (17)

Separation of 2-Matching Constraints (14)

To separate the 2-matching inequalities, we use the heu-
ristic procedure proposed in Fischetti et al. [6]. This algo-
rithm can identify several violated 2-matching constraints
for the current fractional solution. Briefly, it consists of
considering each connected component H of G* as the

handle of a possibly violated generalized 2-matching in-
equality whose 2-node teeth correspond to the edges e
� �(H) with x*e � 1 (if the number of these edges is even,
the inequality is clearly rejected).

Separation of Constraints (15) and (16)

Clearly, inequalities (15) can be separated through a
complete enumeration of vi, vj, vk such that y*ij  0, y*jk
 0, and y*ki  0. Indeed, when (say) yij � 0 and (12)
holds, then (15) also holds. In a similar way, for each vi, vj,
vk such that y*ij  0, y*jk  0 and y*ki  0, a min-cut
separating v1 from {vi, vj, vk} in G* gives the most-
violated constraint (16), if any. Again, when (say) yij � 0
and (6) holds, then (16) also holds.

5. COMPUTATIONAL RESULTS

The branch-and-cut algorithm described in the previous
sections was implemented in the C�� programming lan-
guage. ABACUS 2.3 linked with CPLEX 6.0 was used as a
branch-and-cut framework. See Jünger and Thienel [10] for
details on this software. The performance of the algorithm
was tested on three different classes of test instances. The
root was always chosen as the first vertex.

Class I is based on TSP instances from TSPLIB 2.1
(Reinelt [16]) involving between 50 and 200 vertices (prob-
lems eil51 to kroB200). Denote by lij the distance between
vertices vi and vj given in the TSP files. To obtain optimal
solutions visiting approximately 100, 75, 50, and 25% of the
total number of vertices in the instances, we set cij � �lij,
dij � (10 � �)lij for � � {3, 5, 7, 9}, and dii � 0 for
all vi � V.

Class II was generated in the following way: We gener-
ated vertices with coordinates in [0, 1000] � [0, 1000] and
computed lij as the Euclidean distance between vi and vj

rounded up to the nearest integer. Costs cij, dij, and dii are
defined as in Class I, using the same values of �. For each
pair (�V�, �), we generated 10 instances.

Class III consists of instances generated as in Lee et al.
[13]. We first generated vertices with coordinates in [0,
1000] � [0, 1000] and then computed lij as the Euclidean
distance between vi and vj rounded up to the nearest integer.
Costs cij :� dij :� lij and costs dii were randomly gener-
ated in the interval [0, 1000] for all vi � V. For each value
�V�, we generated 10 instances.

Tables 1–4 summarize the computational behavior of
our branch-and-cut code on the three classes of instances.
The column headings are defined as follows:

Name: problem name (for Class I);
�V�: number of vertices (for Classes II and III);
�: scale factor described above (for Classes I and II);

succ: number of instances solved to optimallity over 10
trials (for Classes II and III);
p*: percentage of vertices visited by the optimal cycle;

opt: optimal objective value (for Class I);
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TABLE 1. Computational results for instances in Class I.

Name � %-UB0 h-Time p* opt %-LB %-UB Pair Sec 2mat Nodes Time

eil51 3 107.51 0:00:00 100.00 1278 100.00 107.51 4 155 91 3 0:00:02
eil51 5 102.76 0:00:00 74.51 1995 100.00 100.00 61 42 0 1 0:00:01
eil51 7 101.47 0:00:00 33.33 2113 100.00 100.00 238 1251 0 1 0:00:10
eil51 9 101.29 0:00:00 11.76 1244 100.00 100.00 529 883 0 1 0:00:10

berlin52 3 105.06 0:00:00 100.00 22,626 100.00 100.00 12 46 0 1 0:00:01
berlin52 5 102.78 0:00:00 78.85 36,115 100.00 100.00 85 957 36 1 0:00:04
berlin52 7 100.94 0:00:00 46.15 37,376 100.00 100.00 221 655 1 1 0:00:06
berlin52 9 100.78 0:00:00 9.62 20,361 100.00 100.00 539 941 0 1 0:00:12

brazil58 3 102.16 0:00:01 100.00 76,185 100.00 100.00 18 105 3 1 0:00:02
brazil58 5 101.46 0:00:01 68.97 115,045 100.00 100.00 104 2994 285 1 0:00:14
brazil58 7 100.24 0:00:00 48.28 126,807 100.00 100.00 237 1543 2 1 0:00:12
brazil58 9 100.00 0:00:00 15.52 83,690 100.00 100.00 577 1502 0 1 0:00:28

st70 3 103.41 0:00:01 100.00 2025 99.80 103.41 32 660 110 11 0:00:13
st70 5 102.41 0:00:01 78.57 3110 99.84 102.41 110 2837 243 3 0:00:24
st70 7 101.41 0:00:01 42.86 3402 100.00 100.00 283 1920 0 1 0:00:20
st70 9 100.15 0:00:00 25.71 2610 100.00 100.00 806 1935 0 1 0:01:10

eil76 3 107.25 0:00:02 100.00 1614 100.00 100.00 6 139 43 1 0:00:05
eil76 5 100.61 0:00:02 73.68 2460 99.92 100.61 113 1858 56 5 0:00:21
eil76 7 102.76 0:00:01 42.11 2504 100.00 100.00 343 2228 0 1 0:00:37
eil76 9 101.35 0:00:00 15.79 1710 100.00 100.00 930 2440 0 1 0:02:28

pr76 3 101.55 0:00:02 100.00 324,477 98.59 101.55 128 15270 6043 727 0:17:39
pr76 5 106.21 0:00:02 80.26 500,395 99.66 106.21 171 8847 1489 71 0:02:27
pr76 7 103.89 0:00:01 53.95 555,858 99.80 103.89 350 6744 254 13 0:01:54
pr76 9 100.72 0:00:00 17.11 424,359 100.00 100.00 874 3011 0 1 0:03:04

gr96 3 102.75 0:00:15 100.00 163,935 99.30 102.75 38 1608 415 31 0:01:43
gr96 5 104.31 0:00:13 79.17 252,850 100.00 100.00 144 4802 292 1 0:01:06
gr96 7 105.97 0:00:07 50.00 275,599 100.00 100.00 409 3254 2 1 0:01:08
gr96 9 105.99 0:00:02 27.08 232,823 100.00 100.00 1236 3766 0 1 0:06:53

rat99 3 107.35 0:00:06 100.00 3633 99.89 107.35 12 1178 234 13 0:00:38
rat99 5 103.65 0:00:05 89.90 5885 100.00 100.00 150 2437 300 1 0:00:35
rat99 7 104.26 0:00:02 42.42 6436 100.00 100.00 480 3197 0 1 0:01:20
rat99 9 105.01 0:00:01 21.21 5150 100.00 100.00 1285 4541 0 1 0:07:19

kroA100 3 100.86 0:00:06 100.00 63,846 99.80 100.86 24 886 211 11 0:00:37
kroA100 5 100.21 0:00:05 80.00 100,785 99.78 100.21 149 6285 246 3 0:01:26
kroA100 7 106.18 0:00:03 55.00 115,388 100.00 100.00 428 3368 4 1 0:01:16
kroA100 9 103.15 0:00:00 21.00 94,265 100.00 100.00 1250 3150 0 1 0:05:57

kroB100 3 105.42 0:00:06 100.00 66,423 99.50 105.42 30 2051 310 39 0:01:38
kroB100 5 104.35 0:00:05 77.00 104,550 100.00 100.00 147 4319 271 1 0:00:57
kroB100 7 103.95 0:00:02 46.00 118,111 100.00 100.00 435 3322 0 1 0:01:17
kroB100 9 100.99 0:00:00 16.00 93,938 100.00 100.00 1303 4238 0 1 0:07:34

kroC100 3 102.42 0:00:06 100.00 62,247 99.81 102.42 48 1074 215 9 0:00:33
kroC100 5 103.43 0:00:05 81.00 99,065 100.00 100.00 141 3283 280 1 0:00:45
kroC100 7 102.40 0:00:03 50.00 113,533 100.00 100.00 438 3200 0 1 0:01:07
kroC100 9 102.07 0:00:01 23.00 92,894 100.00 100.00 1319 4056 0 1 0:07:05

kroD100 3 105.58 0:00:06 100.00 63,882 99.88 105.58 40 948 186 5 0:00:32
kroD100 5 105.25 0:00:05 82.00 101,645 100.00 100.00 154 2651 119 1 0:00:38
kroD100 7 101.07 0:00:02 47.00 116,849 99.94 101.07 440 4213 7 3 0:01:50
kroD100 9 102.82 0:00:00 23.00 92,102 100.00 100.00 1251 4123 0 1 0:06:58

kroE100 3 104.55 0:00:06 100.00 66,204 99.28 104.55 48 821 374 41 0:01:44
kroE100 5 103.67 0:00:05 77.00 104,915 99.94 103.67 170 6678 447 11 0:01:54
kroE100 7 105.60 0:00:02 51.00 116,471 100.00 100.00 441 3010 1 1 0:01:06
kroE100 9 100.96 0:00:01 20.00 96,116 100.00 100.00 1228 5068 0 1 0:08:25

rd100 3 101.67 0:00:06 100.00 23,730 100.00 100.00 28 524 122 1 0:00:16
rd100 5 102.34 0:00:05 76.00 37,975 99.87 102.34 165 6766 282 5 0:01:40
rd100 7 102.61 0:00:02 44.00 40,915 100.00 100.00 433 5848 26 1 0:01:53
rd100 9 102.59 0:00:01 21.00 31,776 100.00 100.00 1287 4368 0 1 0:07:01

eil101 3 106.84 0:00:06 100.00 1887 99.84 106.84 16 824 227 19 0:00:46
eil101 5 103.61 0:00:05 72.28 2905 100.00 100.00 301 1810 257 1 0:00:31
eil101 7 102.29 0:00:02 38.61 2926 99.93 102.29 1680 7918 18 7 0:04:00
eil101 9 101.48 0:00:00 17.82 1955 100.00 100.00 3291 4970 0 1 0:08:18

lin105 3 103.43 0:00:07 100.00 43,137 100.00 100.00 56 808 145 1 0:00:21
lin105 5 100.81 0:00:06 80.95 69,365 100.00 100.00 233 2588 341 1 0:00:43
lin105 7 107.97 0:00:04 53.33 83,597 100.00 100.00 1149 4047 6 1 0:01:38
lin105 9 102.37 0:00:02 31.43 69,920 100.00 100.00 3995 4998 0 1 0:07:30

Averages 3 104.24 0:00:05 100.00 61,695.56 99.73 103.02 33.75 1693.56 545.56 57.13 0:01:41
5 102.99 0:00:04 78.13 96,191.25 99.94 100.97 149.88 3697.13 309.00 6.75 0:00:52
7 103.31 0:00:02 46.50 107,242.81 99.98 100.45 500.31 3482.38 20.06 2.25 0:01:15
9 101.98 0:00:01 19.82 84,057.06 100.00 100.00 1356.25 3374.38 0.00 1.00 0:05:02
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TABLE 2. Computational results for instances in Class I (continued).

Name � %-UB0 h-Time p* Opt %-LB %-UB Pair Sec 2mat Nodes Time

pr107 3 100.36 0:00:08 100.00 132,909 100.00 100.00 0 1171 15 1 0:00:23
pr107 5 100.89 0:00:06 68.22 210,465 100.00 100.00 327 3418 169 1 0:00:50
pr107 7 100.63 0:00:03 42.99 259,571 100.00 100.00 1198 4979 1 1 0:01:52
pr107 9 101.08 0:00:01 26.17 264,918 100.00 100.00 4218 5366 0 1 0:06:45
gr120 3 103.26 0:00:14 100.00 20,826 99.92 103.26 40 1337 186 0 0:01:01
gr120 5 103.75 0:00:10 75.83 31,480 100.00 100.00 420 8782 366 1 0:02:38
gr120 7 102.19 0:00:06 41.67 32,301 100.00 100.00 1211 6133 0 1 0:03:19
gr120 9 103.19 0:00:01 22.50 24,322 100.00 100.00 3799 6332 0 1 0:11:34
pr124 3 104.96 0:00:14 100.00 177,090 98.82 104.96 251 10,055 1594 195 0:12:32
pr124 5 103.45 0:00:13 90.32 286,115 99.79 103.45 559 7777 782 17 0:03:58
pr124 7 102.48 0:00:10 66.94 358,853 100.00 100.00 1263 7590 21 1 0:03:27
pr124 9 102.65 0:00:03 39.52 340,153 100.00 100.00 5122 7999 1 1 0:16:05
bier127 3 104.70 0:00:15 100.00 354,846 99.84 104.70 64 1883 341 29 0:02:27
bier127 5 108.23 0:00:13 76.38 539,955 100.00 108.23 526 10,150 638 3 0:03:32
bier127 7 101.35 0:00:06 44.09 567,110 99.99 101.35 2140 11,081 27 5 0:07:11
bier127 9 100.24 0:00:01 14.96 347,845 100.00 100.00 5989 7333 0 1 0:36:52
ch130 3 107.09 0:00:17 100.00 18,330 99.85 107.09 100 2049 384 21 0:02:07
ch130 5 106.60 0:00:15 83.08 28,790 100.00 100.00 400 7044 608 1 0:02:38
ch130 7 103.87 0:00:08 47.69 32,707 99.64 100.77 3183 19,575 143 15 0:11:24
ch130 9 101.72 0:00:01 16.15 23,639 100.00 100.00 5179 7112 0 1 0:21:56
pr136 3 104.15 0:00:20 100.00 290,316 99.45 104.15 42 11,092 5600 147 0:15:04
pr136 5 101.43 0:00:18 86.76 468,520 100.00 100.00 401 6192 437 1 0:02:23
pr136 7 102.59 0:00:06 43.38 491,981 100.00 100.00 1786 8073 0 1 0:06:01
pr136 9 104.14 0:00:02 25.74 387,327 100.00 100.00 6152 10,262 0 1 0:25:33
gr137 3 104.13 0:02:02 100.00 208,929 99.76 104.13 46 1764 348 13 0:02:36
gr137 5 101.16 0:00:57 83.94 329,465 99.74 101.16 603 20,033 1097 15 0:08:59
gr137 7 102.44 0:00:36 54.74 366,022 100.00 100.00 1965 11,516 16 1 0:07:06
gr137 9 107.02 0:00:05 26.28 335,009 100.00 100.00 6359 10,498 0 1 0:31:09
pr144 3 103.07 0:00:25 100.00 175,611 99.83 103.07 126 1830 232 21 0:02:35
pr144 5 104.87 0:00:24 94.44 290,945 99.55 104.87 1108 45,085 4218 323 0:51:01
pr144 7 103.83 0:00:18 63.89 383,041 100.00 100.00 1607 15,046 236 1 0:07:22
pr144 9 104.68 0:00:03 23.61 366,833 100.00 100.00 7966 11,221 0 1 0:25:44
ch150 3 104.44 0:00:29 100.00 19,584 99.79 104.44 77 4270 547 35 0:05:07
ch150 5 104.64 0:00:25 77.33 31,170 99.98 100.00 550 10,366 456 3 0:05:15
ch150 7 104.02 0:00:13 48.00 34,930 99.99 104.02 1891 10,208 3 3 0:09:21
ch150 9 104.50 0:00:02 18.67 26,371 100.00 100.00 7689 12,746 0 1 0:54:12
kroA150 3 103.53 0:00:29 100.00 79,572 99.49 103.53 84 11,656 2161 115 0:17:05
kroA150 5 102.62 0:00:24 80.67 125,435 100.00 100.00 399 7538 695 1 0:03:44
kroA150 7 103.97 0:00:13 48.67 140,961 99.76 103.97 2106 10,498 90 5 0:09:05
kroA150 9 102.79 0:00:03 19.33 113,080 100.00 100.00 7254 10,606 0 1 0:45:36
kroB150 3 107.31 0:00:29 100.00 78,390 99.51 107.31 78 4667 1491 65 0:10:33
kroB150 5 104.52 0:00:25 79.33 122,875 99.49 104.52 4171 181,892 6524 221 1:52:12
kroB150 7 104.48 0:00:12 50.67 135,382 100.00 100.00 1729 8595 1 1 0:07:01
kroB150 9 102.02 0:00:03 18.67 108,885 100.00 100.00 7372 10,483 0 1 0:43:22
pr152 3 103.41 0:00:31 100.00 221,046 99.51 103.41 162 5210 2296 45 0:09:42
pr152 5 100.00 0:00:34 87.50 376,155 96.05 100.00 1595 58,290 6674 285 2:00:00
pr152 7 100.00 0:00:18 51.32 475,052 96.66 100.00 5576 84188 2042 59 2:00:00
pr152 9 101.78 0:00:03 21.05 475,440 100.00 100.00 10,902 14,875 0 1 0:52:15
u159 3 107.83 0:00:37 100.00 126,240 99.80 107.83 58 1346 610 7 0:02:27
u159 5 104.35 0:00:33 84.28 204,250 99.97 104.35 673 16,748 897 7 0:09:08
u159 7 101.92 0:00:20 55.97 235,221 100.00 100.00 2040 10,668 3 1 0:09:24
u159 9 101.92 0:00:05 25.79 199,552 100.00 100.00 8388 14,736 0 1 0:59:50
rat195 3 108.44 0:01:23 100.00 6969 99.68 108.44 78 17,482 2048 61 0:29:41
rat195 5 108.30 0:01:05 84.62 11,320 99.92 108.30 562 10,841 1033 11 0:12:21
rat195 7 102.53 0:00:28 40.00 12,319 100.00 100.00 2826 21,795 14 1 0:34:25
rat195 9 100.00 0:00:07 16.92 9395 94.21 100.00 8965 16,115 0 1 2:00:00
d198 3 102.50 0:01:28 100.00 47,340 99.74 102.50 60 10,573 1102 65 0:25:54
d198 5 102.49 0:01:10 79.80 76,945 99.94 102.49 2516 106,574 7424 5 1:12:20
d198 7 102.52 0:00:38 51.01 94,300 99.87 101.34 8298 79,000 716 59 1:48:59
d198 9 100.00 0:00:09 19.19 97,899 96.34 100.00 15,536 26,958 0 1 2:00:00
kroA200 3 100.00 0:02:05 100.00 93,699 93.59 100.00 234 23,765 2930 129 2:00:00
kroA200 5 107.78 0:01:12 74.00 138,885 99.85 107.78 2410 149,600 3181 39 2:00:00
kroA200 7 103.77 0:00:43 49.00 158,227 99.83 102.29 7169 72,865 919 37 1:31:05
kroA200 9 100.00 0:00:09 19.00 124,678 97.15 100.00 10,387 16,377 0 1 2:00:00
kroB200 3 106.26 0:01:32 100.00 88,311 99.81 106.26 106 4080 868 33 0:13:44
kroB200 5 104.97 0:01:18 77.00 138,905 99.93 104.97 1025 29,056 1023 7 0:25:44
kroB200 7 101.96 0:00:48 49.00 156,638 100.00 100.00 2854 16,926 4 1 0:25:19
kroB200 9 100.00 0:00:08 18.50 127,800 95.13 100.00 10,055 14,849 0 1 2:00:00

Averages 3 104.44 0:00:42 100.00 125,882.82 99.32 104.42 94.47 6719.41 1338.41 58.29 0:09:00
5 104.12 0:00:34 81.38 200,686.76 99.66 102.95 1073.24 39,963.88 2130.71 55.35 0:18:38
7 102.62 0:00:19 49.94 231,448.00 99.75 100.81 2873.06 23,455.06 249.18 11.35 0:20:08
9 102.22 0:00:04 21.89 198,420.35 98.99 100.00 7725.41 11,933.41 0.06 1.00 0:25:21
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%-UB0: percentage ratio UB/opt, where UB is the objec-
tive function value of the initial heuristic solution (i.e.,
the value of the heuristic solution computed in Step 1 of
the branch-and-cut algorithm);

h-time: initial heuristic time;
%-LB: percentage LB/opt, where LB is the objective value

of the LP-relaxation computed at the root node of the
branch-decision tree (i.e., the value of the fractional so-

TABLE 3. Computational results for instances in Class II.

�V� � Succ p* %-UB0 h-Time %-LB %-UB Pair Sec 2mat Nodes Time

50 3 10 100.00 103.06 0:00:00 99.59 102.30 16.60 437.70 94.10 12.60 0:00:05
5 10 78.60 100.94 0:00:00 99.91 100.11 70.70 941.30 69.10 2.00 0:00:04
7 10 50.40 102.53 0:00:00 100.00 100.00 201.50 971.30 1.90 1.00 0:00:06
9 10 12.40 100.95 0:00:00 100.00 100.00 543.50 977.90 0.00 1.00 0:00:15

75 3 10 100.00 104.30 0:00:02 99.83 102.70 22.20 548.70 148.40 9.20 0:00:15
5 10 78.67 103.40 0:00:02 99.90 100.74 113.50 2777.90 207.60 7.00 0:00:32
7 10 49.33 102.46 0:00:01 99.99 100.28 321.60 2364.80 5.00 1.40 0:00:33
9 10 15.87 101.47 0:00:00 100.00 100.00 895.60 2279.60 0.00 1.00 0:02:02

100 3 10 100.00 104.40 0:00:06 99.74 104.08 35.30 1520.10 398.70 19.40 0:01:07
5 10 77.70 103.96 0:00:05 99.87 102.08 159.90 8149.40 652.20 19.40 0:02:49
7 10 46.00 102.35 0:00:02 99.78 100.89 514.60 31,894.50 988.70 74.40 0:12:53
9 10 19.40 102.31 0:00:01 100.00 100.00 1262.40 4051.60 0.00 1.00 0:07:36

125 3 10 100.00 106.17 0:00:14 99.77 105.31 51.00 2949.20 481.30 24.00 0:02:44
5 10 80.08 104.92 0:00:12 99.92 103.48 520.40 13,255.80 740.40 10.00 0:05:02
7 10 45.44 103.09 0:00:06 99.87 100.51 1902.60 10,757.70 140.50 6.40 0:06:23
9 10 18.16 102.36 0:00:01 100.00 100.00 5409.70 7471.00 0.00 1.00 0:22:05

150 3 10 100.00 105.66 0:00:29 99.75 104.95 118.20 7356.40 1350.30 72.00 0:10:37
5 10 80.20 105.07 0:00:25 99.91 102.41 775.90 32,248.70 1494.70 21.00 0:16:30
7 10 46.67 103.57 0:00:12 99.91 101.38 3718.50 23,575.00 415.70 32.20 0:23:09
9 10 18.47 102.09 0:00:02 100.00 100.00 7424.30 11,163.00 0.00 1.00 0:54:17

175 3 10 100.00 106.69 0:00:54 99.84 105.96 94.90 4248.90 858.80 29.60 0:08:10
5 8 79.71 105.12 0:00:46 99.88 103.20 1128.38 39,025.38 1897.50 17.50 0:27:03
7 9 46.16 103.53 0:00:23 99.89 101.90 4206.56 30,322.00 478.78 19.00 0:34:58
9 9 18.16 102.98 0:00:04 100.00 100.00 9630.22 15,011.78 0.11 1.00 1:43:30

200 3 10 100.00 106.74 0:01:32 99.78 106.74 169.60 12,025.50 1937.70 84.80 0:32:20
5 9 79.56 104.57 0:01:19 99.93 103.53 1006.22 40,507.22 1871.78 10.33 0:33:14
7 8 47.75 104.17 0:00:38 99.92 102.45 4383.25 32,413.25 369.13 14.00 0:48:01
9 0

Averages 3 10.00 100.00 105.29 0:00:28 99.76 104.58 72.54 4155.21 752.76 35.94 0:07:54
5 9.57 79.22 104.00 0:00:24 99.90 102.22 539.29 19,557.96 990.47 12.46 0:12:11
7 9.57 47.39 103.10 0:00:12 99.91 101.06 2178.37 18,899.79 342.82 21.20 0:18:00
9 9.83 17.08 102.03 0:00:01 100.00 100.00 4194.29 6825.81 0.02 1.00 0:31:38

TABLE 4. Computational results for instances in Class III.

With 2-matching constraints (14) Without

�V� Succ p* %-UB0 h-Time %-LB %-UB Pair Sec 2mat Nodes Time %-LB %-UB

10 10 36.00 101.12 0:00:00 100.00 100.00 12.20 12.50 0.00 1.00 0:00:00 100.00 100.00
20 10 25.00 101.74 0:00:00 100.00 100.00 61.90 92.70 0.00 1.00 0:00:00 100.00 100.00
30 10 25.33 103.29 0:00:00 100.00 100.00 104.20 133.50 0.50 1.00 0:00:00 100.00 100.00
40 10 23.00 101.13 0:00:00 100.00 100.00 154.00 258.10 1.70 1.00 0:00:01 100.00 100.00
50 10 20.80 103.74 0:00:00 100.00 100.00 225.90 338.10 1.50 1.00 0:00:02 100.00 100.00
75 10 20.53 101.87 0:00:00 99.99 100.03 401.20 1008.60 5.20 1.20 0:00:12 99.96 100.03

100 10 19.50 103.20 0:00:01 99.98 100.17 561.60 1777.40 14.30 1.60 0:00:35 99.96 100.17
125 10 18.08 102.55 0:00:01 100.00 100.18 1013.00 2882.60 22.10 1.40 0:01:16 99.95 100.50
150 10 17.20 102.37 0:00:03 99.98 100.44 1348.10 4785.40 25.10 2.00 0:02:53 99.95 100.58
175 10 17.01 103.29 0:00:05 99.96 100.65 2534.10 13,865.80 98.00 6.20 0:12:33 99.84 102.26
200 10 16.50 102.32 0:00:08 99.96 100.79 3177.60 26,594.00 165.40 11.00 0:28:22 99.86 101.62
250 8 15.80 103.39 0:00:17 99.98 101.32 3792.75 22,781.75 133.63 4.25 0:32:54 99.90 102.99
300 4 14.75 102.62 0:00:30 99.99 100.25 9220.25 40,934.25 191.25 1.50 1:08:41 99.91 102.13

Averages 9.38 20.73 102.51 0:00:05 99.99 100.29 1738.98 8881.90 50.67 2.63 0:11:21 99.95 100.79
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lutiion of the LP-relaxation when the algorithm first goes
to Step 6);

%-UB: percentage ratio UB/opt, where UB is the objective
value of the best solution at the root node of the branch-
decision tree;

pair: number of Constraints (12) generaged;
sec: number of Constraints (6) with �S�  2 generated;
2mat: number of Constraints (14) generated;
nodes: total number of nodes examined (1 means that the

problem required no branching);
time: total computing time.

The computing times reported are expressed in the for-
mat h:mm:ss and refer to CPU time on a Pentium III
personal computer running at 866 MHz. We imposed a time
limit of 2 h for each run. For the instances exceeding the
time limit, we report “2:00:00” in the time column and
compute the corresponding results by considering the best
available solution as optimal. Hence, for the time-limit
instances, the column %-LB gives an overestimation of the
percentage approximation error. Tables 1 and 2 refer to
Class I (TSPLIB-based instances). Tables 3 and 4 refer to
instances in Class II and Class III, respectively, and contain
average results over 10 trials. Last lines provide average
results overall the trials for each table.

Preliminary experiments revealed that inequalities (15)
and (16) are not useful for solving these benchmark in-
stances in the sense that they were not violated after all
others had been separated. Moreover, even when violations
were detected at the root node, introducing these constraints
did not help to reduce the gap between the lower and the
upper bounds and did not reduce the computing time.
Hence, we decided not to use these inequalities in our tests.
Nevertheless, one could expect that these inequalities
should be useful for solving some non-Euclidean distance
RSP instances.

The results presented in Tables 1–3 indicate that the
proposed branch-and-cut algorithm can solve instances in-
volving up to 200 vertices within modest computing times.
For a given problem size, the most difficult instances tend to
be those where relatively few vertices belong to an optimal
cycle. This can be explained by the fact that the location
component of the problem is then important. At the other
extreme, instances in which all vertices belong to an optimal
cycle reduce to a TSP which is a relatively easy problem for
the values of �V� considered. The %-LB column indicates
that the lower bound developed at the root of the branch-
and-cut tree is very tight, typically within 0.5% of the
optimum. The heuristic is also very powerful and usually
yields a solution within 5% of the optimum. It seems to
perform better when not all vertices belong to the cycle. All
valid inequalities, apart from (15) and (16), are frequently
generated within the search tree. The number of nodes in the
tree is relatively low, and several instances (in particular,
the TSPLIB-based instances) are solved without any
branching. Overall, we were able to solve to optimality 124
of the 132 TSPLIB based instances in Class I. For the

random instances in Class II, the corresponding statistic is
267 of 280, and the largest instances involved 200 vertices.
As observed, the last lines show the average performance of
the algorithm. In particular, the gap of the LP-relaxation and
of the heuristic approach at the end of the root node are very
close to 0.2 and 2%, respectively. The average time to solve
a random instance with up to 200 vertices is under 0.5 hour
on a PC 866 Mhz.

Table 4 shows that for random instances in Class III, that
is, those generated as in [13, 18], we were able to solve to
optimality 122 of 130 instances, involving up to 300 verti-
ces. The largest instances that we were able to solve contain
three times as many vertices as those solved by Lee et al.
[13], who considered a closely related problem. The better
performance of our code is due mainly to our exact sepa-

FIG. A.1. RSP solutions for the proof of Proposition 3.5.
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ration of constraints (6) rather than to the separation of the
weaker constraints (17). The separation of constraints (14)
does not contribute in a sensitive way to the resolution of
the instances of Class III, as observed in the last two
columns of Table 4, which give the average gap of the
LP-relaxation and the heuristic approach at the end of the
root node when valid inequalities (14) are not activated. We
see that the lower bound and the current best solution are
also worse, due to the reduction in the number of iterations
(i.e., executions of Step 4). Nevertheless, this worsening of
the bounds does not significantly affect the overall execu-
tion time since deactivating these constraints saves compu-
tational effort in the separation phase. In other words, from
our experiments, we conclude that constraints (14) are not a
fundamental ingredient of our branch-and-cut approach
when solving Class III instances.

Overall, we observe that the RSP is more difficult to
solve when an optimal ring contains about 20% of the
vertices, which is due mainly to the trade-off between ring
and assignment costs. Indeed, instances of classes I and II
are easier when � is smaller (thus, the objective function is
less sensitive to cij and, therefore, the optimal cycle is close
to be Hamiltonian). The difficulty of solving instances with
small optimal rings is due to the relative weakness of the
location relaxation.

Comparing Class II (� � 5) with Class III, one also
observes the impact of the “hub-selection fixed cost” dii.
More precisely, the ring and assignment costs are compa-
rable in both families of instances, but dii � 0 in Class II.
This explains why smaller optimal cycles were obtained
(see the p* columns) and why larger instances were solved.

6. CONCLUSIONS

We have presented what we believe to be the first exact
algorithm for the RSP, a problem arising in several network

design contexts. An mixed-integer linear programming for-
mulation including several classes of facet-defining inequal-
ities was proposed, together with a branch-and-cut algo-
rithm. The proposed approach was tested on three classes of
instances. The largest solved involved 300 vertices. Recall
that two of the classes are the benchmark instances in
Moreno Pérez et al. [14], while the third set of instances
were generated as those used in Lee et al. [13] and Xu
et al. [18].
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APPENDIX

Proof of Proposition 3.5. This proof is obtained using
induction on the number n :� �V� of vertices. By using the
software PORTA [3], we were able to enumerate all facet-
defining inequalities for n � 5 (see Rodrı́guez Martı́n [17]).
PORTA is a collection of routines to analyze polyhedra; in
particular, it computes all the facet-defining inequalities for
the convex hull of a set of points. This allows us to state that
the result holds true for n � 5.

Assume now that (15) is facet-defining for polytope P
associated with a mixed graph G � (V, E, � A), with V
� {v1, . . . , vn}, n � 5. Let vn�1 � V and define P� as
the polytope associated to G� � (V�, E� � A�), where V�
� V � {vn�1}, E� � E � {[vn�1, vi] : i � 1, . . . , n},
and A� � A � {(vn�1, vi), (vi, vn�1) : i � 1, . . . , n}.
First, consider dim(P) affinely independent vectors of P
satisfying (15) at equality. These vectors can be transformed
into vectors of P� by adding arc (vn�1, v1) to the corre-
sponding RSP solution graphs. Further, those dim(P) new

TABLE A.1. Affinely independence certificate for Proposition 3.5.

Points yn�1,1 yn�1,n�1 yn�1,l : l � 1, n � 1 yl,n�1 : l � n � 1 xe : e � �(n � 1)

P
1
···
1

0 0 0

(a), (b)
0
···
0

1
···
1

0 0

1 1 0 0 · · ·0
···

0 1 0 · · ·0
···

0 0 1 ······
···

· · · 0

1 0 0· · · 0 1
(g) 0 1 0 0 0 1 1 0 · · · 0 0

(c), (d)
0
···
0

1
···
1

0

1 0 · · ·0
0 1 ······

· · · 0
0· · · 0 1

. . .

(e), (f)
0
···
0

0
···
0

1 0 · · ·0
0 1 ······

· · · 0
0· · · 0 1

0 0
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vectors are still affinely independent and tight for (15). To
complete the proof, we need to exhibit dim(P�) � dim(P)
� 3n � 2 affinely independent points of P�, tight for (15)
and such that yn�1,1 � 0. Each mixed graph of Figure
A.1(a,c,e) provides three such points (obtained by permut-
ing vi, vj, and vk). This gives nine points. Next, each mixed
graph of Figure A.1(b,d,f) provides n � 4 such points (one
for each l � 1, i, j, k). Finally, Figure A.1(g) gives the last
point. To see that all these 3n � 2 points are affinely
independent, it suffices to check that the new components of
their characteristic vectors, that is, corresponding to the
addition of vn�1 to the graph, form a nonsingular matrix
(see Table A.1). ■

Proof of Proposition 3.6. The proof is similar to that
of Proposition 3.5.

When n � 7, we can verify that (16) is facet-defining by
using PORTA [3] (see Rodrı́guez Martı́n [17]). Further, the
dim(P) affinely independent vectors of P can be extended
exactly in the same way.

When vn�1 � S, the 3n � 2 additional affinely inde-
pendent vectors illustrated in Figure A.1 are also tight for
(16). When vn�1 � S, Figure A.1(b) yields n � �S� � 1
vectors tight for (16), that is, only if vl � S and vl � v1,
vn�1. Figure A.2(a) provides �S� � 3 additional tight
vectors, that is, for vl � S�{vi, vj, vk}. Further, Figure
A.1(g) must be replaced by Figure A.2(b). ■
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